

BEDIENUNGSANLEITUNG

SUPPLYCOM

Stand 06/2005

SysDesign GmbH Säntisstrasse 25 D-88079 Kressbronn

SysDesign

Telefon: +49 7543 9620-0 Telefax: +49 7543 9620-22 Internet: www.SysDesign.info

Bedienungsanleitung SupplyCom

Stand 06/2005 Seite 2 von 28

Inhaltsübersicht:

1	Generelles	4
	1.1 Sicherheitshinweise und Gewährleistung	4
	1.2 Produkt-Support	4
2	Kommunikationsmodi und Betriersarten	
_	2.1 Kommunikationsmodus	5
	2.2 Betriebsart	
	2.3 Statusanzeige	6
2		6
J	3 1 Vorgehen	0 6
	3.2 RS-232 Pin-Releauna	6
	3.3 Ablauf der Konfiguration	7
	3.4 Befehlsliste für die Konfiguration	
	3.5 Hinweise zu Konfigurationsbefehlen	8
	3.5.1 Einstellen der Netzgeräte-Konfiguration	8
	3.5.2 Einstellen der Bus-Konfiguration	9
4	RS-232 APPLIKATIONSBETRIEB	
	4.1 Grundlagen	10
	4.2 Befehlssatz	10
5	CANOPEN APPLIKATIONSBETRIEB	
-	5.1 Grundlagen	
	5.1.1 CANopen Nutzerorganisation	12
	5.1.2 CANopen Funktionalität	12
	5.1.3 Betrieb in einem reinen CAN Netzwerk	
	5.1.5 Betriebszustände	13
	5.2 Erforderliche Geräteeinstellungen	14
	5.2.1 Baudrate	
	5.2.2 Knotenhummer (Node address)	14
	5.3 Geräteanschluss und Betrieb	
	5.3.1 Anschluss des Moduls an das CAN Netz	15
	5.3.2 Indikator LED	15
	5.4 Prozessdatenobjekte (PDO)	
	5.4.1 FDO Mapping	
	5.5 Serviceualenobjekte (SDO)	/ ا ۱ / ۲ 7
	5.6.1 Einträge im Kommunikationsprofil	
	5.6.2 Einträge im herstellerspezifischen Teil	19
	5.6.3 Einträge im standardisierten Geräteprofil	20
	5.7 Beispiele für CANopen Nachrichten	20

Bedienungsanleitung SupplyCom

Stand 06/2005 Seite 3 von 28

6	6 PROFIBUS APPLIKATIONSBETRIEB	
	6.1 Grundlagen	
	6.1.2 PROFIBUS-DP Funktionalität	
	6.2 Erforderliche Geräteeinstellungen	
	6.2.4 Baudrate	
	6.2.5 Wechsel des Kommunikationsmodus	
	6.3 Geräteanschluss und Betrieb	
	6.3.1 Projektierung 6.3.2 Anschluss des Moduls an das PROFIBUS	
	6.3.3 Betriebszustand (LED-Anzeigen)	
	6.4 PROFIBUS Kommunikation	
	6.4.1 Datenaustausch zwischen Master und 9 6.4.2 Telegrammaufbau der PROFIBLIS-Nach	lave
	6.4.3 Beispiele für PROFIBUS-Datentelegram	
7	7 FIRMWARE-UPDATE	
8	8 VERWENDETE PIN-BEZEICHNUNGEN	
9	9 STICHWORTVERZEICHNIS	

> **Stand 06/2005** Seite 4 von 28

1 Generelles

Bitte lesen Sie sich vor Inbetriebnahme die vorliegende Bedienungsanleitung aufmerksam durch. Bewahren Sie sie stets gut auf, damit Sie jederzeit darauf zugreifen können, auch falls am Einsatzort kein Internet-Zugang zur Verfügung steht.

Beachten Sie insbesondere die Sicherheitshinweise und Gewährleistungsbedingungen.

1.1 Sicherheitshinweise und Gewährleistung

- Sie erhalten zwei Jahre Gewährleistung ab Kauf dieses Gerätes auf Defekt bei sachgemäßen Gebrauch. Wenden Sie sich hierzu ggf. an die Vertriebsstelle, bei der Sie das Produkt erworben haben.
- Verwenden Sie das Gerät nur für die in der Bedienungsanleitung beschriebenen Funktionen. Eine nicht zweckgemäße Verwendung führt zum Erlöschen des Gewährleistungsanspruchs.
- Achten Sie auf korrekte und festsitzende Anschlüsse. Falsche Verkabelung führt eventuell zu Beschädigungen am Produkt, an angeschlossenen Geräten oder in der Umgebung des Produkts.
- Öffnen Sie das Gerät niemals eigenmächtig. Das Öffnen des Gehäuses führt zum Erlöschen des Gewährleistungsanspruchs.
- Ein Umbauen oder sonstiges Verändern des Produktes ist nicht erlaubt.
- Behandeln Sie das Produkt sorgfältig. Auch wenn es für industriellen Einsatz robust ausgelegt worden ist, können Stöße, Schläge oder Herabfallen zu Beschädigungen führen. Diese sind nicht durch die Gewährleistung abgedeckt.

<u>Achtung</u>

ļ

Für Schäden am Gerät, die durch unsachgemäße Bedienung resultierend aus der Nichtbeachtung der Bedienungsanleitung oder durch Missachtung der vorstehenden Hinweise entstehen, besteht kein Gewährleistungsanspruch.

Es wird grundsätzlich keine Haftung für Folgeschäden übernommen.

1.2 Produkt-Support

Diese Bedienungsanleitung, ein ergänzendes Technisches Datenblatt, Gerätedateien sowie weiterer Produkt-Support steht Ihnen jederzeit im Internet zur Verfügung unter:

www.SupplyCom.de

Wenden Sie sich bei Unklarheiten, Hinweisen und Fragen immer zunächst an die Vertriebsstelle, bei der Sie das Produkt erworben haben.

> **Stand 06/2005** Seite 5 von 28

2 Kommunikationsmodi und Betriebsarten

Der Betrieb des SupplyCom kann in zwei Kommunikationsmodi und zwei unterschiedlichen Betriebsarten erfolgen:

2.1 Kommunikationsmodus

Das SupplyCom-Modul besitzt zwei Kommunikationsmodi:

Einstellung	Modus	Beschreibung
Bus bzw. PDPCANopen bzw. PROFIBUS DPKommunikation mit einem Feldbus-System. Es ist nur die Betriebsart "Applikationsmode" möglich (s.		Kommunikation mit einem Feldbus-System. Es ist nur die Betriebsart "Applikationsmode" möglich (s.u.)
RS	RS-232	Punkt-zu-Punkt Kommunikation über die RS-232 Schnittstelle. In diesem Modus stehen beide Betriebsarten zur Verfügung (Applikationsmode und Konfigurationsmode, s.u.).

Der Wechsel zwischen den Kommunikationsmodi erfolgt per Drehschalter an der Modul-Unterseite. Der Wechsel des Kommunikationsmodus sollte nur im abgeschalteten Zustand erfolgen !

2.2 Betriebsart

Das SupplyCom-Modul besitzt zwei Betriebsarten:

Konfigurationsmode	In diesem Modus kann die Konfiguration des Moduls überprüft bzw. verändert werden. Die eingestellte Konfiguration bleibt erhalten bis Änderungen vorgenommen werden. Die Betriebsart kann nur im RS-232-Kommunikationsmodus gestartet werden.
Applikationsmode	Dies ist die Standard-Betriebsart. In dieser Betriebsart kann das Gerät in jedem Kommunikationsmodus betrieben werden (CANopen/PROFIBUS DP oder RS-232). Voraussetzung ist jedoch eine erfolgte Erstkonfiguration.

Nach der Aktivierung überprüft SupplyCom seinen Speicher nach einer gültigen Konfiguration. Sollte diese nicht vorhanden sein, kann das Modul nur im Konfigurationsmodus gestartet werden.

Nach erfolgter Konfiguration startet das Modul bei Aktivierung automatisch im Applikationsmode und ist nach 5 Sekunden betriebsbereit.

Soll die aktive Konfiguration des Gerätes überprüft oder geändert werden, muss in den Konfigurationsmode gewechselt werden. Dies erfolgt durch Drücken der Tastenkombination **STRG-E** innerhalb der ersten 5 Sekunden nach Aktivierung. Nach Ablauf des Zeitfensters ohne Drücken des STRG-E-Befehls startet das Modul im Applikationmode. Zum Wechseln in den Konfigurationsmode muss das Gerät dann neu gestartet werden.

Bedienungsanleitung SupplyCom

> **Stand 06/2005** Seite 6 von 28

2.3 Statusanzeige

Der momentane Betriebsstatus lässt sich an der LED folgendermaßen feststellen:

Konfigurationsmode	CANopen-Version: PROFIBUS-Version:	LED blinkt abwechselnd rot/grün rote LED "SF" blinkt schnell
Applikationsmode	siehe Beschreibungen in den jeweiligen Anwendungsbeschreibungen	

3 Konfiguration über ASCII-Terminal

3.1 Vorgehen

Die Konfiguration des SupplyCom-Moduls erfolgt mit einem einem Hilfsprogramm, das über die seriellen Schnittstelle mit dem Modul kommuniziert.

Hierfür wird das Dienstprogramm Hyperterminal empfohlen. Das Programm ist für MS-Windows Systeme standardmäßig installiert. Der Aufruf erfolgt im Windows-Startmenü unter dem Pfad "Programme" im Verzeichnis "Kommunikation".

Im Folgenden wird eine Beschreibung der notwendigen Einstellungen im Programm Hyperterminal gegeben. Sollte ein anderes Programm verwendet werden, ist die Anpassung des Dienstprogrammes analog zu vorzunehmen.

<u>Ablauf:</u>

- 1. Eingabe des Namens der Verbindung. (Es kann ein beliebiger Name verwendet werden)
- 2. Kommunikationsschnittstelle: Angabe des Ports, an dem die serielle Verbindung aufgebaut ist (COM1,COM2,...)
- 3. Anschlusseinstellungen:

b.

- a. Bits pro Sekunde: 9600
 - Datenbits: 8
- c. Parität: Keine/NONE
- d. Stoppbits:
 - 1
- e. Fluss-Steuerung: Keine/NONE
- 4. Unter dem Menüpunkt Datei/Eigenschaften/Einstellungen muss noch die Emulation auf VT52 eingestellt werden.

Es sollte nun eine Verbindung zwischen PC und SupplyCom bestehen.

3.2 RS-232 Pin-Belegung

Der Anschluss an die RS232-Schnittstelle erfolgt über die 9 poligen Sub-D-Anschlüsse. Der männliche und weibliche Stecker sind parallelgeschaltet und gleichwertig verwendbar. Der Schnittstellenwahlschalter muss in die Stellung "RS232" gebracht werden.

Bild 1: RS-232 Pin-Belegung

Bedienungsanleitung SupplyCom

> **Stand 06/2005** Seite 7 von 28

3.3 Ablauf der Konfiguration

Das SupplyCom-Modul benötigt für den Applikationsbetrieb eine gültige Konfiguration.

Vorgehen:

- 1. Schalter für Kommunikationsmodus an Unterseite des SupplyCom-Moduls auf **RS** stellen
- 2. Verbindungskabel zwischen Modul und PC anschließen
- 3. Starten und Einstellen des HyperTerminals
- 4. Anlegen der Versorgungspannung an SupplyCom
- 5. bei erstmaliger Konfiguration Tastenkombination **STRG-E** drücken, und Befehl eingeben
- 6. sollte eine Konfiguration im Speicher vorhanden sein, kann man mit **STRG-E** innerhalb der ersten 5 Sekunden den Konfigurationsmodus starten
- 7. Auflistung der unterstützten Profile mit Befehl **PL**
- 8. Eingabe eines Netzteilprofils über Profilnummer z.B. **P=2** (siehe Befehlsliste)
- 9. sollte kein Profil übereinstimmen, kann auch eine manuelle Eingabe über **PU** erfolgen
- 10. Eingabe der Buskonfiguration mit Befehl
- 11. mit den Befehlen **DP** und **DB** können die eingegeben Werte nochmals überprüft werden
- 12. nach erfolgreicher Konfiguration Stromversorgung des SupplyCom aus- und wieder anstecken
- 13. nach 5 Sekunden startet SupplyCom im Applikationsmode

3.4 Befehlsliste für die Konfiguration

Befehl	Beschreibung	
H oder ?	Liste der Befehle	
L	Sprache auswählen	
PL	Liste der Netzteilprofile ausgeben	
P=	Profilnummer auswählen	
DP	aktives Profile ausgeben	
PU	benutzerdefiniertes Profil eingeben	
В	Buskonfiguration eingeben	
DB	Buskonfiguration ausgeben	
EXIT	Konfigurationsmodus beenden	

> Stand 06/2005 Seite 8 von 28

3.5 Hinweise zu Konfigurationsbefehlen

Es werden nur Zeichen angenommen, die für die Eingabe wichtig sind. Alle eingegebenen Buchstaben werden automatisch zu Großbuchstaben konvertiert.

3.5.1 Einstellen der Netzgeräte-Konfiguration

zu Befehl **P=**: Die auszuwählende Profilnummer wird einfach hinter dem Befehl angehängt. z.B. P=1, oder P=25, ...

- zu Befehl **PU**: Es werden nacheinander folgende Konfigurationsdaten abgefragt:
- UMax[V] Eingabe der Spannung in Volt oder Millivolt Bei Eingabe in Volt kann die Einheit V entfallen z.B. 300, 10. Bei Eingabe in Millivolt einfach M anhängen z.B. 100M, 1500M. Es kann als maximaler Wert 650V eingeben werden. IMax[A] Eingabe des Stroms in Ampere oder Milliampere. Bei Eingabe in Ampere kann die Einheit Ampere entfallen z.B. 24, 5 Bei Eingabe in Millampere einfach M anhängen z.B. 20M, 150M Es kann als maximaler Wert 650A eingegeben werden. **Referenz Spannung** Eingabe der Referenzspannung an der Netzteilschnittstelle PortDef Die einzelnen angesteuerten Pins werden nacheinander Eingabe der einzelnen Funktion, die an dem Pin angeschlossenen ist. z.B.: 0 für DISABLE, 1 für RSD... Die entsprechende Belegung ist dem Netzteildatenblatt zu entnehmen. Die Bezeichnungen sind am Ende dieses Handbuchs aufgelistet. Mit Befehl **H** können die unterstützten Funktionen angezeigt werden. zu Befehl **DP** : Es wird eine Übersicht aller eingestellten Konfigurationparameter angezeigt. Die Pin-Unterstützung wird dabei auch in Form der Geräte-internen Werten angegeben:

Use Mask	Gibt an, ob welche digitalen Pin verwendet werden. 0 = Not Connected / 1 = Connected Darstellung als hexadezimaler Wert. Wertebereich: 0_h - $3F_h$
IO Mask	Gibt an, wie ein bidirektionaler digitaler Pin genutzt wird. 0 = Ausgang / 1 = Eingang Darstellung als hexadezimaler Wert. Wertebereich: 0h - 0Fh

Unterstützte digitale Pins*						
7**	6	5	4	3	2	1
÷	← Use Mask →					
\leftarrow IO Mask \rightarrow						
UM Bit	UM Bit	UM Bit	UM Bit	UM Bit	UM Bit	UM Bit
			IOM Bit	IOM Bit	IOM Bit	IOM Bit

* Pin-Nummer entspricht nicht Steckerbelegung / ** 7.digitales Pin nur bei PROFIBUS-Variante

Bild 2: Bedeutung Use Mask und IO Mask

> **Stand 06/2005** Seite 9 von 28

3.5.2 Einstellen der Bus-Konfiguration

zu Befehl **B**: Es werden nacheinander die einzelenen Konfigurationsparameter abgefragt. Nur für die Geräteversion und dem gewähltem Modus relevanten Abfragen werden angezeigt.

Kommunikations-	Eingabe der gewünschten Kommunikation auf der Kommunikations-
modus	schnittstelle im Applikationsbetrieb.
	(z.B. 0 für RS, 1 für CANopen, 3 für PROFIBUS)
	Es werden nur die von der Hardware unterstützten Bustypen angezeigt

BaudrateEingabe der Baudrate für den Applikationsbetrieb,
(RS: z.B. 9600 für 9600Baud, CANopen: z.B. 125 für 125kBaud)
Durch die Einstellung kann nur die im Applikationsmode genutzte
Baudrate eingestellt werden.
Mit H können die erlaubten einzustellenden Baudraten angezeigt
werden.

<u>Hinweis 1:</u> im Konfigurationsmodus wird ausschließlich eine Übertragungsrate von 9.600 Baud verwendet – diese ist nicht veränderbar.

<u>Hinweis 2:</u> die Baudrate im PROFIBUS-Applikationsmodus wird automatisch eingestellt. Die Abfrage findet daher für die PROFIBUS-Konfiguration nicht statt.

Paritybit	Einstellen der Parität im RS-Applikationsetrieb (z.B. N für kein Paritybit, O für ungerade, E für gerade)
Knotenadresse	Eingabe der Knotennummer bzw. Slave-Adresse für den CANopen bzw. PROFIBUS-Applikationsbetrieb (z.B. 100).
	<u>Hinweis:</u> Bei CANopen entsprechen die Identifier einer Priorität bei der Buskommunikation. Bei hoher Priorität des SupplyCom-Moduls sollte eine niedrige Adresse gewählt werden, bzw. umgekehrt

<u>Achtung</u>

Nach erfolgter Konfiguration muss der Drehschalter am Modul auf den entspre Applikationsmodus gebracht werden.		n muss der Drehschalter am Modul auf den entsprechenden t werden.
	Bei CANopen-Betrieb:	BUS
	Bei PROFIBUS-DP-Betrieb:	PDP

> Stand 06/2005 Seite 10 von 28

4 RS-232 Applikationsbetrieb

4.1 Grundlagen

Die Pin-Belegung am 9-poligen Sub-D-Anschluss ist im Kapitel "Konfiguration über ASCII-Terminal" ersichtlich.

Der verwendete Befehlssatz ist voll kompatibel mit dem SCPI-Protokoll gemäß IEEE 1174-Standard.

Damit lässt sich das Gerät aus Anwendungen wie LabView/LabWindows[®] heraus oder auch per ASCII-Terminal über die aufgeführten Befehle direkt ansprechen. Voraussetzung für den Betrieb ist eine gültige Gerätekonfiguration, insbesondere die Buskonfiguration unter Befehl **B**.

Falls eine Abfrage (? oder H) durchgeführt wird, kommt die Antwort sofort im Anschluß über die serielle Schnittstelle.

Falls ein fehlerhafter Befehl geschickt wird, blinkt die LED-Anzeige rot. Beim nächsten fehlerfreien Befehl wird die LED auf grün umgeschaltet.

4.2 Befehlssatz

Der verwendete SCPI-Befehlssatz ist auf der Folgeseite aufgeführt. Die Befehle werden können direkt aus der Applikation heraus über die RS-232-Schnittstelle übermittelt werden.

<u>Hinweise:</u>

Die Analogwerte für Strom und Spannung werden in den Einheiten Ampere oder Volt als Fließkommazahl ein- oder ausgelesen (getrennt durch Dezimalpunkt, 3 Nachkommastellen, z. B. 20.123)

Das Modul funktioniert als Slave im Polling-Betrieb. Bei Abfrage von Ist-Werten werden diese direkt ausgegeben.

- Analogwerte in A oder V als als Fließkommazahl mit 3 Nachkommastellen (z. B. 20.123)

- Digitalwerte als Zahlenwert "0" (trifft zu) oder "1" (trifft nicht zu)

Das Modul ist im RS-232 Applikationsmodus mit einer Bus-Timeout-Überwachung ausgestattet. Diese stellt den Strom- und Spannungswert aus Sicherheitsgründen automatisch auf "0", wenn innerhalb von 5 Sekunden kein externer Befehl empfangen wird.

Die Überwachung ist im Betrieb über einen Befehl abwählbar, wird nach Abschalten des Moduls jedoch wieder standardmäßig aktiviert.

Bei direkter Verwendung der Befehle in Programmcode muss der Befehl mit Return abgeschlossen werden (z.B. /r/n)

Bedienungsanleitung SupplyCom

Stand 06/2005 Seite 11 von 28

- ür die Befehlseingabe im RS-232 Applikationsbetrieb bedeutet:				
<wsp></wsp>	Leerzeichen			
<nr></nr>	Fließkommazahl, getrennt durch Dezimalpunkt, 3 Nachkommastellen (z. B. 20.123)			
<dgt></dgt>	Bezeichner eines digitalen Pins gemäß Tabelle "verwendete Pin-Bezeichner", Seite 28			
<hexvalue></hexvalue>	hexadezimaler Zahlenwert (Werte	bereich CANopen-Modul 0-3F, PROFIBUS-Modul 0-7F)		
{1 0} Nur 1 oder 0 erlaubt				

Befehl	Beschreibung							
so:vo <wsp><nr></nr></wsp>	Einstellen der Ausgangsspannung des Netzgerätes							
so:cu <wsp><nr></nr></wsp>	Einstellen des Ausgangsstromes des Netzgerätes							
so:vo?	Abfrage der eingestellten Ausgangsspannung des Netzgerätes							
so:cu?	Abfrage des eingestellten Ausgangsstroms des Netzgerätes							
so:vo:ma <wsp><nr></nr></wsp>	Einstellen der maximalen Ausgangsspannung des Netzgerätes							
	Hinweis: SupplyCom verliert diese Info nach Stromausfall, danach ist die Einstellung laut Konfigurator gültig							
so:cu:ma <wsp><nr></nr></wsp>	Einstellen des maximalen Ausgangsstroms des Netzgerätes							
	Hinweis: SupplyCom verliert diese Info nach Stromausfall, danach ist die Einstellung laut Konfigurator gültig							
so:vo:ma?	Abfragen der maximalen Ausgangsspannung des Netzgerätes							
so:cu:ma?	Abfragen des maximalen Ausgangsstroms des Netzgerätes							
so:fu: <dgt><wsp>{1 0}</wsp></dgt>	Einstellen des Signals an einem digitalen Pin auf (1) bzw. (0)							
so:fu: <dgt>?</dgt>	Abfragen des momentanen Status eines digitalen Pin; Rückgabewert: (0) oder (1)							
me:vo?	Messung der momentanen Ausgangsspannung							
me:cu?	Messung des momentanen Ausgangsstroms							
co:us?	Lesen der Use Mask (verwendete digitale Pins; (1)=benutzt; Ergebnis Hex-Wert)							
co:us <wsp><hexvalue></hexvalue></wsp>	Einstellen der Use Mask							
co:io?	Lesen der IO Mask (digitaler In- oder Out-Port; (1)=Out am Netzgerät; Hex-Wert)							
co:io <wsp><hexvalue></hexvalue></wsp>	Setzen der IO Mask							
so:fu?	Lesen der aktuellen digitalen Signale (Ergebnis als Hexadezimalwert)							
so:fu <wsp><hexvalue></hexvalue></wsp>	Setzen der digitalen Signale							
co:ti <wsp>{sec 0}</wsp>	Einstellen der Bus-Timeout-Überwachung (standardmäßig aktiv)							
	Ausschalten: (0) Einschalten: ganzzahliger Wert ungleich Null, Zeit in Sekunden							
	Hinweis: die Bus-Timeout-Uberwachung stellt den Strom- und Spannungswert aus							
	externer Befehl empfangen wird.							
	Die Überwachung wird nach Abschalten des Moduls wieder standardmäßig aktiviert.							

Beispielbefehle:

Einstellung einer Spannung von 25,7V: Korrektur der maximalen Spannung des Netzgeräts auf 15,25V: Ausschalten der Bus-Timeout-Überwachung: Abfrage, ob das Netzteil im Strombegrenzungsmodus arbeitet: Versetzen des Netzgeräts in Remote Shut-Down:

so:cu 25.7 so:vo:ma 15.25 co:ti 0 so:fu:ccs? so:fu:rsd 1

Stand 06/2005 Seite 12 von 28

5 CANopen Applikationsbetrieb

5.1 Grundlagen

5.1.1 CANopen Nutzerorganisation

Nähere Hinweise zu CAN und CANopen Grundlagen und Protokollen finden Sie bei der CiA-Nutzerorganisation (CAN in Automation).

CAN in Automation

Am Weichselgarten 26 91058 Erlangen Tel. +49-9131-69086-0 Fax +49-9131-69086-79 E-Mail: headquarters@can-cia.org Internet: www.can-cia.org

5.1.2 CANopen Funktionalität

Die CANopen Funktionalität entspricht einem Master-Slave-Verhalten gemäß CiA Draft Standard 401.

Von den CANopen Features werden folgende unterstützt:

- ⇒ SYNC Objekt
- ⇒ Emergency Objekt
- \Rightarrow Node Guarding
- → Heartbeat
- \Rightarrow Expedited und Nonexpedited SDO Transfer
- ⇒ CANopen Indicator LED

Nicht unterstützt werden:

- ⇒ SYNC Master
- ⇒ Emergency Inhibit
- ⇒ Time Stamp
- SDO Block Transfer
- SDO Manager
- STORE / RESTORE
- ▷ NMT Master
- ⇔ LSS

> Stand 06/2005 Seite 13 von 28

5.1.3 Betrieb in einem reinen CAN Netzwerk

Der Betrieb des SupplyCOM Moduls ist auch in einem reinen CAN Netzwerk möglich. Dies setzt jedoch genaue Kenntnis und Einbindung der verwendeten spezifischen Identifier voraus. Richten Sie sich hierzu an den Hersteller.

Prinzipiell gilt:

- Identifier, die sich gemäss den nachfolgend aufgeführten Default Identifiern für das Modul ergeben, dürfen nicht verwendet werden.
- Es werden standardmäßig nur 11 Bit Identifier unterstützt. Hinweis: Ist in dem CAN-Netz die Verwendung des 29 Bit Extended Formats erforderlich, kann auf Anfrage eine entsprechende Software-Anpassung vorgenommen werden.
- Es ist zwingend erforderlich, dem Knoten die "Start Remote Node" Nachricht zu senden.

5.1.4 Default Identifier

Die COB-ID (CAN Identifier) setzt sich aus 4 Bit für die Funktion und aus 7 Bit für die Knotennummer zusammen. Die Bereiche für die einzelnen Funktionen können nachstehender Tabelle entnommen werden, wobei xxxxxxx für die binäre Knotennummer eines CANopen Gerätes steht.

ldentifier (binär) MSB LSB	Identifier (dezimal)	ldentifier (hexadezimal)	Bedeutung / Funktion
00000 000000	0	0	Netzwerkmanagement
0001 0000000	128	80	Synchronisation
0001 xxxxxxx	129 - 255	81 – ff	Emergency
0011 xxxxxxx	385 - 511	181 - 1ff	Transmit PDO1
0100 xxxxxxx	513 - 639	201 – 27f	Receive PDO 1
0101 xxxxxxx	641 - 767	281 – 2ff	Transmit PDO 2
0110 xxxxxxx	769 - 895	301 - 37f	Receive PDO 2
0111 xxxxxxx	897 - 1023	381 - 3ff	Transmit PDO 3
1000 xxxxxxx	1025 - 1151	401 - 47f	Receive PDO 3
1001 xxxxxxx	1153 - 1279	481 – 4ff	Transmit PDO 4
1010 xxxxxxx	1281 - 1407	501 – 57f	Receive PDO 4
1011 xxxxxxx	1409 - 1535	581 – 5ff	SDO senden
1100 xxxxxxx	1537 - 1663	601 - 67f	SDO empfangen
1110 xxxxxxx	1793 - 1919	701 – 77f	NMT Error Control

5.1.5 Betriebszustände

Zustand	Beschreibung
PreOperational	Es können nur SDO verwendet werden.
Operational	Es können SDO und PDO verwendet werden.
Stopped	Nur NMT Kommunikation möglich.

> Stand 06/2005 Seite 14 von 28

5.2 Erforderliche Geräteeinstellungen

Voraussetzung für den Betrieb ist eine gültige Gerätekonfiguration. Die Konfiguration kann nur im Kommunikationsmodus "RS" erfolgen.

Die Handhabung des Konfigurators wird im Kapitel "Konfiguration über ASCII-Terminal" beschrieben. Die relevanten Einstellungen für die Buskonfiguration erfolgen unter Befehl **B**.

5.2.1 Baudrate

Die Baudrate wird mittels dem Konfigurator über die serielle Schnittstelle eingestellt. Zulässig ist nur die Angabe einer Geschwindigkeit gemäss nachfolgender Tabelle. Falls die Geschwindigkeit frei gewählt werden kann und keine besonderen Anforderungen vorliegen, empfiehlt sich eine Baudrate von 125 kBit/s. Wie die Baudrate eingestellt werden kann, ist der Dokumentation zum Konfigurator zu entnehmen.

Baudrate	max. Buslänge
1 MBit/s	25 m
800 kBit/s	50 m
500 kBit/s	100 m
250 kBit/s	250 m
125 kBit/s	500 m
50 kBit/s	1000 m
20 kBit/s	2500 m
10 kBit/s	5000 m

5.2.2 Knotennummer (Node address)

Die Angabe der Knotennummer erfolgt ebenfalls über den Konfigurator. Zulässig ist nur eine Angabe zwischen 1_d und 127_d . Beachten Sie bei der Auswahl, dass eine niedrige Knotennummer einer hohen Priorität entspricht. Wie die Knotennummer eingestellt werden kann, ist der Dokumentation zum Konfigurator zu entnehmen.

5.2.3 Wechsel des Kommunikationsmodus

Nach erfolgter Konfigurationseinstellung wird das Modul von der RS-Schnittstelle getrennt und ausgeschaltet (Trennung der Stromversorgung).

Jetzt kann der Kommunikationsmodus "BUS" eingestellt werden. Die Einstellung erfolgt per Drehschalter an der Modul-Unterseite.

Der Wechsel des Kommunikationsmodus sollte nur im abgeschalteten Zustand erfolgen !

<u>Achtung</u>

Nach erfolgter Konfiguration muss der Drehschalter am Modul auf den entsprechenden Applikationsmodus **BUS** gebracht werden.

> Stand 06/2005 Seite 15 von 28

5.3 Geräteanschluss und Betrieb

5.3.1 Anschluss des Moduls an das CAN Netz

Vor Anschluss an ein CAN Netzwerk ist sicherzustellen, dass das Modul entsprechend konfiguriert wurde und der per Drehschalter an der Modul-Unterseite auf dem Kommunikationsmodus "BUS" gestellt ist.

Der CAN-Anschluss erfolgt über die 9 polige weibliche Sub-D Buchse.

Die männliche 9 polige Sub-D Buchse dient zum Aufstecken eines 120 Ω Abschlusswiderstands oder zum Weiterführen des Busses (falls nicht Steckerseitig realisiert).

Beide Anschlüsse sind parallelgeschaltet.

Bild 3: CAN-bus Pin-Belegung

5.3.2 Indikator LED

Die Anzeige des Betriebszustands erfolgt über eine zweifarbige LED (grün/rot).

Nach dem Einschalten blinkt die LED für 5 Sekunden in einem schnellen Takt abwechselnd grün und rot. In dieser Zeit im Kommunikationsmodus RS der Konfigurator gestartet werden (siehe Kapitel "Konfiguration über ASCII-Terminal").

Nach Ende der Konfigurationszeit blinkt die LED grün weiter. Dies zeigt an, dass sich das SupplyCOM im Zustand "Preoperational" befindet. Nach Erhalt der Start Remote Node Nachricht leuchtet die LED dauerhaft grün. Ein rotes Leuchten oder Blinken signalisiert einen Fehler. Weitere Einzelheiten über das Verhalten der LED können der Norm CiA DR-303-3 entnommen werden.

> Stand 06/2005 Seite 16 von 28

5.4 Prozessdatenobjekte (PDO)

Prozessdaten dienen zur schnellen Datenübertragung. Die Übertragung erfolgt daher verbindungslos. Die Übertragung wird durch die unteren Protokollschichten (Data Link Layer) des CAN gesichert.

5.4.1 PDO Mapping

In den PDO können nur Daten übertragen werden, die im Objektverzeichnis gespeichert sind. Welche Daten aus dem Objektverzeichnis in welche PDO und in welcher Reihenfolge gepackt werden, wird als PDO Mapping bezeichnet. Für das SupplyCOM wurde die Norm DS-401 der CiA verwendet. Diese schreibt vor, dass die digitalen Ausgänge in Receive PDO 1 gemappt werden. In Receive PDO 2 werden die analogen Ausgangswerte (Strom, Spannung) gemappt. In Transmit PDO 1 werden die digitalen Eingänge gemappt. Transmit PDO 2 beinhaltet die analogen Eingangswerte (Strom, Spannung).

Für die nachfolgenden PDO Tabellen gilt folgender Aufbau und Kennzeichnung:

Kennzeichnung des Byte	1 Byte	1 Byte 1 Byte 1 Byte 1 Byte						
Wertigkeit (dezimal) innerhalb des Byte	Anzahl bits, b	zw. dezimale W	/ertigkeit innerl	halb des Byte				
Bezeichner / Name / Bedeutung	Bezeichnung, dem Präfix m	Bezeichnung, Übertragung der Analogwerte erfolgt mit dem Präfix m (in mA. bzw mV)						
	RFU: reserved d.h. Bestandte frei (leer), d.h. keine physikal	for future use il der PDO aber nicht Bestandt ische Übertragi	<mark>r Inhalt ist nich</mark> eil der PDO und ung	t verwertbar d somit auch				

<u>Hinweise:</u>

Die Analogwerte lassen sich leicht in 32 Bit Variablen vom Typ Integer (VINT32) oder unsigned Integer (VUINT32) übernehmen. Die Daten der TPDO1 / RPDO1 können in je zwei char Variablen abgelegt werden.

Die Übertragung der Daten erfolgt im Little Endian Format (niederwertigstes Byte zuerst). Dieses Verhalten kann auf Wunsch geändert werden (Swapping).

Stand 06/2005 Seite 17 von 28

RPDO1 (2 Byte)*

			1 Byt	9				1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte
128	64	32	16	8	4	2	1							
RFU	RFU	MS_PAR	OVPLS	VMS	GNDMS	RSD	DIS				7 Byte f	frei		

RPD02 (8 Byte)

1 Byte	1 Byte	1 Byte	1 Byte	1 Byte 1 Byte		1 Byte	1 Byte
volle 32 Bit				volle 32 Bit			
l program				V program			

TPDO1 (2 Byte)*

	1 Byte								1	Byte						
128	64	32	16	6	4	2	1	128	64	32	16	8	4	2	1	
RFU	RFU	RFU	RFU	MS PAR	OVPLS	VMS	GNDMS	ACF	DCF	LIM	ОТ	PSOL	CCS	RSD	DIS	6 Byte frei

TPDO2 (8 Byte)

1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte
volle 32 Bit				volle 32 Bit			
I monitor				V monitor			

* Die Bezeichnungen der digitalen Pins sind am Ende dieses Handbuchs aufgelistet.

5.5 Servicedatenobjekte (SDO)

Unterstützt wird die Default SDO. Dies ist eine Server SDO, d.h. dass das Modul von anderen Modulen über diese angesprochen werden kann, aber selbst keinen Zugriff auf Objekte anderer Module hat. Über SDO können Einträge im Objektverzeichnis gelesen und geschrieben werden.

5.6 Objektverzeichnis

Index	Object
0000 _h	Unbenutzt
0001 _h - 025F _h	Datentypen
0260 _h - 0FFF _h	Reserviert
1000 _h - 1FFF _h	Kommunikationsprofil
2000 _h - 5FFF _h	Herstellerspezifischer Teil
6000 _h - 9FFF _h	Standardisiertes Geräteprofil
A000 _h – BFFF _h	Standardisiertes Interfaceprofil
C000 _h – FFFF _h	Reserviert

Stand 06/2005 Seite 18 von 28

Index	Subindex	Name	Attribut	Datentyp	Default Wert
0x1000	0	Device Type	CONST	UNSIGNED32	0x000F0191
0x1001	0	Error Register	RO	UNSIGNED8	0
0x1003	0	Number of Errors (standrad error field)	RO	UNSIGNED8	0
0x1003	1	Standard Error Field	RO	UNSIGNED32	0
0x1003	2	Standard Error Field	RO	UNSIGNED32	0
0x1003	3	Standard Error Field	RO	UNSIGNED32	0
0x1003	4	Standard Error Field	RO	UNSIGNED32	0
0x1003	5	Standard Error Field	RO	UNSIGNED32	0
0x1003	6	Standard Error Field	RO	UNSIGNED32	0
0x1003	7	Standard Error Field	RO	UNSIGNED32	0
0x1003	8	Standard Error Field	RO	UNSIGNED32	0
0x1003	9	Standard Error Field	RO	UNSIGNED32	0
0x1003	10	Standard Error Field	RO	UNSIGNED32	0
0x1003	11	Standard Error Field	RO	UNSIGNED32	0
0x1003	12	Standard Error Field	RO	UNSIGNED32	0
0x1003	13	Standard Error Field	RO	UNSIGNED32	0
0x1003	14	Standard Error Field	RO	UNSIGNED32	0
0x1003	15	Standard Error Field	RO	UNSIGNED32	0
0x1003	16	Standard Error Field	RO	UNSIGNED32	0
0x1005	0	Sync. ID	RW	UNSIGNED32	0x0000080
0x1008	0	Device Name	CONST	STRING	"SupplyCom"
0x1009	0	Hardwareversion	CONST	STRING	Hardwareversion
0x100A	0	Softwareversion	CONST	STRING	Softwareversion
0x100C	0	GuardTime	CONST		
0x100D	0	LifeTime	CONST		0
0x1014	0	Emergency ID	RW	UNSIGNED32	\$NODEID + 0x0000080
0x1017	0	Hoartboat	D\\/		0
0×1017	0	Number of Entries			0
021018	0	(Identity Object)	ĸŎ	UNSIGNEDO	4
0x1018	1	Vendor_ID	RO	UNSIGNED32	0x0000000
0x1018	2	Product Code	RO	UNSIGNED32	unser Product Code
0x1018	3	Revision Number	RO	UNSIGNED32	unsere Revision Number
0x1018	4	Serial Number	RO	UNSIGNED32	unsere Seriennummer
0x1400	0	Number of Entries (1 Receive PDO Communication Parameter)	RO	UNSIGNED8	2
0x1400	1	COB-ID	RW	UNSIGNED32	\$NODEID + 0x200
0x1400	2	Transmission Type	RW	UNSIGNED8	255d
0x1401	0	Number of Entries (2 Receive PDO Communication Parameter)	RO	UNSIGNED8	2

5.6.1 Einträge im Kommunikationsprofil

Bedienungsanleitung SupplyCom

Stand 06/2005 Seite 19 von 28

Index	Subindex	Name	Attribut	Datentyp	Default Wert
0x1401	1	COB-ID	RW	UNSIGNED32	\$NODEID + 0x300
0x1401	2	Transmission Type	RW	UNSIGNED8	255d
0x1600	0	Number of Entries (RPDO1 Mapping Parameter)	RO	UNSIGNED8	2
0x1600	1	PDO Mapping Entry	RO	SIGNED32	0x62000108
0x1600	2	PDO Mapping Entry	RO	SIGNED32	0x62000208
0x1601	0	Number of Entries (RPDO2 Mapping Parameter)	RO	UNSIGNED8	2
0x1601	1	PDO Mapping Entry	RO	SIGNED32	0x64110120
0x1601	2	PDO Mapping Entry	RO	SIGNED32	0x64110220
0x1800	0	Number of Entries (1 Transmit PDO Communication Parameter)	RO	UNSIGNED8	2
0x1800	1	COB-ID	RW	UNSIGNED32	\$NODEID + 0x40000180
0x1800	2	Transmission Type	RW	UNSIGNED8	255d
0x1801	0	Number of Entries (2 Transmit PDO Communication Parameter)	RO	UNSIGNED8	2
0x1801	1	COB-ID	RW	UNSIGNED32	\$NODEID + 0x40000280
0x1801	2	Transmission Type	RO	UNSIGNED8	255d
0x1A00	0	Number of Entries (TPDO1 Mapping Parameter)	RO	UNSIGNED8	2
0x1A00	1	PDO Mapping Entry	RO	UNSIGNED32	0x60000108
0x1A00	2	PDO Mapping Entry	RO	UNSIGNED32	0x60000208
0x1A01	0	Number of Entries (TPDO2 Mapping Parameter)	RO	UNSIGNED8	2
0x1A01	1	PDO Mapping Entry	RO	UNSIGNED32	0x64010120
0x1A01	2	PDO Mapping Entry	RO	UNSIGNED32	0x64010220

5.6.2 Einträge im herstellerspezifischen Teil

Index	Subindex	Name	Attribut	Datentyp	Default Wert
🖁 Keir	ie Einträge v	vorhanden			

Stand 06/2005 Seite 20 von 28

Index	Subindex	Name	Attribut	Datentyp	Default Wert
0x6000	0	Number of Entries	RO	UNSIGNED8	2
0x6000	1	Digital Input 1	RO	UNSIGNED8	
0x6000	2	Digital Input 2	RO	UNSIGNED8	
0x6200	0	Number of Entries	RO	UNSIGNED8	2
0x6200	1	Digital Output 1	RW	UNSIGNED8	
0x6200	2	Digital Output 2	RW	UNSIGNED8	
0x6401	0	Number of Entries	RO	UNSIGNED8	2
0x6401	1	Analog Input 1	RO	SIGNED32	
0x6401	2	Analog Input 2	RO	SIGNED32	
0x6411	0	Number of Entries	RO	UNSIGNED8	2
0x6411	1	Analog Output 1	RW	SIGNED32	
0x6411	2	Analog Output 2	RW	SIGNED32	

5.6.3 Einträge im standardisierten Geräteprofil

Hinweis:

Н

Für das SupplyCom Modul existiert eine .eds Datei (Electronic Datasheet), welche das gesamte Objektverzeichnis beschreibt. Die .eds Datei wurde mit dem Programm CANchkEDS 1.5.0 syntaktisch geprüft. Zum Download der Datei siehe Kapitel "Produkt-Support".

5.7 Beispiele für CANopen Nachrichten

Die nachfolgend gezeigten exemplarischen Nachrichten gehen von einem SupplyCOM Modul mit der Knotennummer 10_d (=A_h) aus.

Nachric	ht (hexadez	zimal)	Beschreibung
Bootup			Nach Einschalten des Netzgerätes versendet das
ID	DLC	Data	SupplyCOM Modul die Bootup Nachricht.
70A	1	00	
Start Remote Node			Der Empfang dieser Nachricht startet den Knoten (der Knoten verlässt den Prognastional Zustand und
ID	DLC	Data	wechselt in den Operational Zustand)
000	2	01 0A	weensett in den operational Zustand).
Stop Re	mote Node		Stoppt den Knoten.
ID	DLC	Data	
000	2	02 0A	
Enter Preoperational State		al State	Der Knoten wechselt in den Preoperational Zustand.
ID	DLC	Data	
000	2	80 0A	

Bedienungsanleitung SupplyCom

Stand 06/2005 Seite 21 von 28

Nachrie	cht (hexade	zimal)	Beschreibung	
Reset N	Node		Neustart des Knotens.	
ID	DLC	Data		
000	2	81 0A		
Reset C	Communica	tion	Neustart der Kommunikation.	
ID	DLC	Data		
000	2	82 0A		
SYNC N	lachricht		Aufforderung an das SupplyCom Modul TPDO1 und	
ID	DLC	Data	TPDO2 zu senden.	
80	0			
Transn	nit PDO 1		Diese Nachricht enthält die digitalen Ausgänge des	
ID	DLC	Data	Netzgerätes codiert in den zwei Datenbyte.	
18A	2	00 00		
Transn	nit PDO 2		Im Datenfeld sind 4 Byte für den tatsächlich	
ID	DLC	Data	fliessenden Strom und 4 Byte für die gemessene	
28A	8	00 00 00 00 00 00 00 00	bzw. mA. (Beispiel nächste Zeile)	
Transmit PDO 2 zum Auslesen A/V			Beispiel: Auslesen der Istwerte 26,73 A und 33,64 V:	
ID	DLC Data		$26,73A \rightarrow 26730mA \rightarrow 26730_{d} \rightarrow 686A_{h}$	
28A	8	6A 68 00 00 68 83 00 00	Beachte: Lowbyte zuerst (Little Endian)	
Receive	e PDO 1		Mit der RPDO1 können die digitalen Eingänge des	
ID	DLC	Data	Netzgerätes beschrieben werden.	
20A	1	02		
Receive	e PDO 2		RPDO2 beinhaltet die analogen Stellwerte. Die Angabe des Stromwertes wird vom Netzgerät als	
ID	DLC	Data		
30A	8	00 00 00 00 00 00 00 00	Strollibegreitzung verwendet. (Beispier nachste zeite)	
Receive	e PDO 2 zui	n Einstellen A/V	<u>Beispiel:</u> Einstellung der Sollwerte 5,6 A und 152,4 V:	
ID	DLC	Data	$5,6A> 5600mA> 5600_{d}> 15E0_{h}$	
30A	8	E0 15 00 00 50 53 02 00	Beachte: Lowbyte zuerst (Little Endian)	
Remote	e-Frame TPI	DO1	Der nebenstehende Remote-Frame dient zur	
П	DLC	Data	Anforderung der TPDO1. Wenn SYNC aktiv ist, wird	
18A	R0		die zuletzt gesendete TPDOT noch einmal gesendet.	
Remote	e-Frame TPI	DO2	Der nebenstehende Remote-Frame dient zur	
П		Data	Anforderung der TPDO2. Wenn SYNC aktiv ist, wird	
28A	R0		die zuletzt gesendete TPDO2 noch einmal gesendet.	
SDO			Beispiel für eine "Upload SDO Segment Protocol"	
ID	DLC	Data	Nachricht. Im Beispiel wird der	
60A	8	60 08 10 00 00 00 00 00	Objektverzeichniseintrag 1008h (Geratename) gelesen	
			CCS = 3	
			Toggle Bit = 0	

Stand 06/2005 Seite 22 von 28

6 **PROFIBUS Applikationsbetrieb**

6.1 Grundlagen

6.1.1 PROFIBUS Nutzerorganisation

Nähere Hinweise zu PROFIBUS Grundlagen und Protokollen finden Sie bei der PROFIBUS-Nutzerorganisation (PNO).

PROFIBUS Nutzerorganisation e.V.

Haid-und-Neu-Strasse 7 D-76131 Karlsruhe Tel. +49 721 9658-590 Fax +49 721 9658-589 E-Mail: germany@profibus.com Internet: www.profibus.com

6.1.2 PROFIBUS-DP Funktionalität

Das SupplyCom-Modul kann als Slave in ein PRODFIBUS-DP Netzwerk eingebunden werden. Dabei wird der DP-V0-Standard gemäß IEC 61784 Ed.1:2002 CPF 3/1, sowie das PROFIBUS-Protokoll gemäß IEC 61158 unterstützt.

Das erforderliche Einstellen der Slave-Adresse erfolgt in der Konfiguration des Moduls. Die für die Projektierung erforderliche GSD-Datei sowie Bitmaps für die Anzeige im Projektierungstool werden wie nachstehend beschrieben bereitgestellt.

6.2 Erforderliche Geräteeinstellungen

Voraussetzung für den Betrieb ist eine gültige Gerätekonfiguration. Die Konfiguration kann nur im Kommunikationsmodus "RS" erfolgen.

Die Handhabung des Konfigurators wird im Kapitel "Konfiguration über ASCII-Terminal" beschrieben. Die relevanten Einstellungen für die Buskonfiguration erfolgen unter Befehl **B**.

6.2.3 Slave-Adresse

Vor der Inbetriebnahme muss dem Modul die entsprechende PROFIBUS-Slave-Adresse mitgeteilt werden. Dazu wird in der Konfiguration (Kapitel 3 Seite 6) eine Knotenadresse (Slave-Adresse) vergeben. Die Adresse wird dezimal angegeben und nur Adressen von 1_d bis 125_d sind gültig. Die Höhe der Zahl hat nichts mit der Priorität zu tun. Ausschließlich der PROFIBUS-Master steuert die zeitliche Reihenfolge der Kommunikation mit seinen Teilnehmern.

> Stand 06/2005 Seite 23 von 28

6.2.4 Baudrate

Hierzu ist keine Einstellung erforderlich.

Die Baudrate wird vom PROFIBUS-DP-Master vorgegeben, das Gerät erkennt automatisch die passenden Baudrate und synchronisiert sich auf diese. Folgende Baudraten werden unterstützt:

Baudrate	max. Buslänge
12 MBit/s	100 m
6 MBit/s	100 m
3 MBit/s	100 m
1500 kBit/s	200 m
500 kBit/s	400 m
187,5 kBit/s	1000 m
93,75 kBit/s	1200 m
45,45 kBit/s	1200 m
19,2 kBit/s	1200 m
9,6 kBit/s	1200 m

Bei Stichleitungen bis 1500 kBits/s sollte die Leitungslänge nicht länger als 6,6 m betragen. Die Übertragungsrate darf bei Stichleitungen 1500 kBits/s nicht überschreiten.

6.2.5 Wechsel des Kommunikationsmodus

Nach erfolgter Konfiguration des SupplyCom-Moduls wird das Modul von der RS-Schnittstelle getrennt und ausgeschaltet (Trennung der Stromversorgung).

Jetzt kann der Kommunikationsmodus "PDP" eingestellt werden. Die Einstellung erfolgt mit einem Drehschalter an der Modul-Unterseite.

Der Wechsel des Kommunikationsmodus am Drehschalter darf nur im abgeschalteten Zustand erfolgen !

6.3 Geräteanschluss und Betrieb

6.3.1 Projektierung

Damit das Modul in einem PROFIBUS-DP Netzwerk arbeiten kann, muss zuvor das SupplyCom-Modul dem PROFIBUS-DP Netzwerk hinzugefügt werden.

Das wird durch die Projektierung des Profibus-Masters realisiert.

Die für die Projektierung notwendigen Dateien (GSD-Datei, Bitmaps) stehen im Internet unter

www.SupplyCom.de

zum Download bereit. Diese Dateien müssen Sie gegebenenfalls in die entsprechenden Verzeichnisse Ihres Projektierungstools kopieren (z.B. die GSD-Datei in den Ordner "\GSD" im Unterverzeichnis Ihres Projektierungstools).

> Stand 06/2005 Seite 24 von 28

6.3.2 Anschluss des Moduls an das PROFIBUS Netz

Vor Anschluss an ein PROFIBUS Netzwerk ist sicherzustellen, dass das Modul entsprechend konfiguriert wurde und der per Drehschalter an der Modul-Unterseite auf dem Kommunikationsmodus "PDP" gestellt ist.

Der PROFIBUS-Anschluss erfolgt über die 9 polige weibliche Sub-D Buchse.

Verwenden Sie für PROFIBUS nur geeignete und entsprechend geschirmte Kabel. Die Sub-D Buchse hat folgende Pin-Belegung:

Pi	Bezeichnung
1	Schirm/Funktionserde - NC
2	GND 24V optional - NC
3	B-Line (+)
4	RTS
5	GND 5V
6	+5V
7	24V optional - NC
8	A-Line (-)
9	Repeater-Steuersignal optional - NC

Bild 4: PROFIBUS Pin-Belegung (NC = Not Connected)

Der Bus muss am Anfang und am Ende durch einen Abschlusswiderstand terminiert werden. Ist das Modul ein Endgerät, so muss einen entsprechender Stecker mit Abschlusswiderstand verwendet werden und dieser ist zu aktivieren.

6.3.3 Betriebszustand (LED-Anzeigen)

Die LED "ON" leuchtet sobald eine Betriebsspannung anliegt.

Der Gerätezustand und die Betriebsmodi werden durch die LED "SF" angezeigt. Bei Initialisierung des Gerätes werden verschiedene Zustände durchlaufen.

Der Status der Kommunikation wird durch die LED "BF" angezeigt. Sobald eine gültige PROFIBUS-Datenkommunikation aufgebaut wurde, erlischt diese LED.

LEDs		Bedeutung	Ursache	
SF	BF	ON		
(rot)	(rot)	(grün)		
aus	aus	aus	keine Stromversorgung	+ keine Stromversorgung
aus	an	an	Bootloader Phase	+ Gerät ermöglicht Upload neuer Firmware
schnelles Blinken (4Hz)	an	an	Konfigurationsphase	+ Gerät kann konfiguriert werden
kurzes Aufblinken (1Hz)	aus	an	Applikationsmodus	+ Gerät ist im Betriebsmodus
			PROFIBUS	
kurzes Aufblinken (1Hz)	an	an	Applikationsmodus RS	+ Gerät ist im Betriebsmodus
			Fehler im	+ Verbindung zum Bus gestört
			Applikationsmodus	(Kabel,Stecker,Abschlusswiderstand
		PROFIBUS	prüfen)	
				+ kein Master vorhanden o. Master fehlerhaft
schnelles Flackern	an	an	Firmware Upload	+ Eine neue Firmware wird aufgespielt.

> Stand 06/2005 Seite 25 von 28

6.3.4 Inbetriebnahme

Nachdem die Konfiguration abgeschlossen wurde, kann das Modul an das PROFIBUS-DP-Netzwerk angeschlossen werden. Das Modul nimmt sofort an der Datenkommunikation teil und fängt mit der Standart Initialisierung an. Dabei werden Konfigurationsdaten zwischen Master und Slave ausgetauscht und mit den Einträgen in der GSD-Datei verglichen.

<u>Achtung</u>

Nach erfolgter Konfiguration muss der Drehschalter am Modul vor Anschluss an den PROFIBUS auf den entsprechenden Applikationsmodus **PDP** gebracht werden.

6.4 **PROFIBUS Kommunikation**

6.4.1 Datenaustausch zwischen Master und Slave

In dem Multi-Sequenz-Chart unten wird die Kommunikation zwischen Master und Slave vereinfacht dargestellt. Der Slave liefert fortwährend Daten vom Netzteil an den Master. Das Format dieses Output Data Telegram ist näher in Kapitel "Telegramm Aufbau" erklärt. In jeder Millisekunde werden Spannungs- und Stromwerte des Netzteils sowie die Zustände der digitalen Ports gemessen. Diese Daten werden dem PROFIBUS-Master als Eingangsdaten zu Verfügung gestellt. Soll das Netzteil einen anderen Spannungs- oder Stromwert annehmen, so sendet man die neuen Werte als Ausgangsdaten zu dem Slave. Das entsprechende Format dieses Input Data Telegramist identisch mit dem Output Data Telegram und im Kapitel "Telegramm Aufbau" erläutert.

Bild 5: Datenaustausch PROFIBUS-DP Master-Slave

> Stand 06/2005 Seite 26 von 28

6.4.2 Telegrammaufbau der PROFIBUS-Nachrichten

Nach dem Anschluss des SupplyCom-Moduls können vom Master bereits Datentelegramme empfangen werden.

Der Aufbau eines Daten-Telegramms ist unten beschrieben. Dieser Aufbau ist identisch für die zyklischen Nachrichten vom Modul an den Master (Output Data Telegram) als auch für Einstellbefehle vom Master an das Modul (Input Data Telegram).

Die Bezeichnungen der digitalen Pins sind am Ende dieses Handbuchs aufgelistet.

1 Byte 2 x 8 Bit volle 32 Bit volle 32 Bit Pin Status (s.u.) Stromstärke (I program or I monitor) Spannung (V program or V monitor) Pin Status (2 Byte) 1. Byte 2. Byte 1 128 64 32 16 8 4 2 128 64 32 16 8 Δ 2 ACF DCF LIM OT PSOL CCS RSD DIS RFURFURFURFURFUMS PAR OVPLS VMS GNDMS

Input/Output Data Telegram (Länge 10Byte)

Bild 6: Aufbau Datentelegramm (input oder output)

Hinweise:

Die Analogwerte lassen sich leicht in 32 Bit Variablen vom Typ Integer (VINT32) oder unsigned Integer (VUINT32) übernehmen. Die Daten für Strom- und Spannung können in je zwei char Variablen abgelegt werden.

Die Übertragung der Daten erfolgt im Big Endian Format (höherwertigstes Byte zuerst). Dieses Verhalten kann auf Wunsch geändert werden (Swapping).

6.4.3 Beispiele für PROFIBUS-Datentelegramme

Nachr	richt (hexadezimal)	Beschreibung
Outpu	ut Data Telegram a	zum Auslesen A/V	Auslesen der Istwerte 26,73 A und 33,64 V:
	Current	Voltage	26,73A> 26730mA> 26730d> 686Ah 33 64V> 33640mV> 33640> 8368
	00 00 68 6A	00 00 83 68	Beachte: Highbyte zuerst (Big Endian)
Input	Data Telegram zu	m Einstellen A/V	Einstellung der Sollwerte 5,6 A und 152,4 V:
	Current	Voltage	5,6A> 5600mA> 5600 _d > 15E0 _h 152 4V> 152400mV> 152400 _d > 25350 _h
	00 00 68 6A	00 00 83 68	Beachte: Highbyte zuerst (Big Endian)

> Stand 06/2005 Seite 27 von 28

7 Firmware-Update

Sie haben die Möglichkeit, die Firmware des Moduls bei sich vor Ort selbst auf dem aktuellsten Stand zu halten.

Die erforderlichen Dateien inklusive des Boot-Loaders (Flashtool) zum automatischen Aufspielen der Firmware auf das Modul stehen Ihnen im Internet zur Verfügung. Die Adresse ist im Kapitel "Produkt-Support" angegeben. Dort finden Sie ggf. auch Hinweise, welche Firmwareversion mit Ihrem Modul kompatibel ist.

<u>Ablauf:</u>

- 1. Beachten Sie die nachstehend unter "Achtung" genannten Hinweise !
- 2. Laden Sie die Firmware-Datei aus dem Internet und extrahieren Sie die Dateien des WinZip-Archivs auf den genutzten PC
- 3. Schalten Sie das SupplyCom Modul aus, indem Sie die Stromversorgung trennen.
- 4. Bringen Sie den Drehschalter für den Kommunikationsmodus auf Stellung "RS-232"
- 5. Stellen Sie Verbindung zwischen SupplyCom und PC mit einem 1:1 SUB-D Kabel her. Das Kabel wird an einem COM Port des PC angeschlossen. Das Kabel sollte an beiden Enden fest angeschlossen sein und sicher sitzen.
- 6. Öffnen Sie die Eingabeaufforderung und Starten Sie das Flashtool durch Ausführen der Datei COM_X.bat (X steht dabei für die Nummer des verwendeten COM Ports z.B. COM_2.bat bei Anschluss des Moduls an den COM2-Port des PC).

Alternativ kann das Flashtool auch über folgende direkte Befehlseingabe ausgeführt werden:

z.B. für COM3:

flasher.exe -d "<Dateiname>" -p <COM-Port-Nr>
flasher -d "p&e_icd.s2" -p 3

- 7. Schalten Sie das Modul ein, indem Sie die Stromversorgung wieder herstellen. Der Ladevorgang startet dann automatisch.
- 8. Warten Sie den Ladevorgang der Firmware ab. Dies kann zwischen 30 Sekunden und 2 Minuten dauern. Die Status LED blinkt während des Ladevorgangs rot. Das Flashtool darf keine Fehlermeldung ausgeben (z.B. Verify Error).
- 9. Nach erfolgreichem Ladevorgang wird das Modul mit der neuen Firmware automatisch gestartet und ist sofort einsatzbereit.

<u>Achtung</u>

Î	Wie bei jedem Flashvorgang birgt das Update der Firmware ein gewisses Risiko. Führen Sie das Update daher nur aus, wenn es unbedingt erforderlich ist, um bestehende Kompatibilitätsprobleme zu behen oder neue Funktionalität zu ermöglichen.
Î	Die beschriebene Prozedur zum Update des Moduls auf neue Firmwareversionen wurde bestmöglich geprüft und bei Einhaltung dieser Anleitung für sicher befunden. Lesen Sie sich die Anleitung daher aufmerksam durch und halten Sie die Abfolge ein.
ļ	Da der Hersteller den Flashvorgang nicht selbst durchführt, kann keinerlei Haftung für mögliche resultierende Schäden am Modul oder seiner Funktionalität übernommen werden.

> Stand 06/2005 Seite 28 von 28

8 Verwendete Pin-Bezeichnungen

Die Bezeichnung der Signale an den digitalen Pins ist in Anlehnung an die Signale der Netzgeräte der Firma Delta Elektronika gewählt. Dadurch soll die logische Zuordnung der Signale in den Netzteilprofilen unterstützt werden. Da die Bezeichner von der echten Funktion unabhängig sind, können sie bei der Erstellung eigener Profile prinzipiell frei verwendet werden.

Bezeichner	Beschreibung	I/O
DIS	Disabled	
ACF	AC - FAIL	IN
DCF	DC - FAIL	IN
LIM	CC Limit	IN
OT	Over Temperature	IN
PSOL	Power Sink Overload	IN

Bezeichner	Beschreibung	I/O
CCS	CC State	IN
RSD	Remote Shutdown	OUT
MS_PAR	Master/Slave parallel	OUT
OVPLS	Over Voltage	IN
VMS	VMS	OUT
GNDMS	Ground Master	OUT

9 Stichwortverzeichnis

Anschlusseinstellungen		6
Applikationsmode		5
Baudrate	5,	24
Befehle		7
Betriebsarten		5
Buskonfiguration		8
CANopen Applikationsbetrieb		13
CANopen Features		13
CANopen Nachrichten2	1,	28
CiA	3,	23
CAN in Automation1	3,	23
COB-ID		14
Datenblatt		4
EDS-Datei		
Electronic Datasheet		21
Firmware-Update		29
Geräteprofil		21
Hyperterminal		6
Identifier		14
Input Data Telegram 2	6,	28
Knotenadresse		10
Knotennummer1	4,	15
Kommunikationsmodus		5
Umschalten Siehe auch Schalter	fü	r
Kommunkationsmod	dus	S
Kommunikationsprofil		19
Konfiguration		6
Konfigurationsmode		. 5
LED 6, 16, 2	5,	29
Liste der Befehle	••••	7
Liste der Netzteilprofile	••••	7

Netzteilprofil	7
Objektverzeichnis	18
Output Data Telegram	26, 28
PDO	
Prozessdatenobjekte	17
PDO Mapping	17
Pin-Belegung	
CAN	16
PROFIBUS	25
RS-232	7
Pin-Bezeichnungen	
digitale Signale	31
Produkt-Support	4
PROFIBUS	
Datenaustausch	26
Input Data Telegram	26
Kommunikation	26
Output Data Telegram	26
PROFIBUS Applikationsbetrieb	23
PROFIBUS-DP	23
Profil	7
Receive PDO	17, 22
Referenzspannung	8
RS-232 Applikationsbetrieb	11
Schalter für Kommunikationsmodus	5, 7
SDO	
Servicedatenobiekte	
Slave-Adresse	
Support	
Transmit PDO	17.22
	, ==